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C O N S P E C T U S

Protein structure modeling and prediction have impor-
tant applications throughout the biological sciences,

from the design of pharmaceuticals to the elucidation of
enzyme mechanisms. At the core of most protein mod-
eling is an energy function, the minimum of which rep-
resents the free energy “cost” for forming a correct
protein structure. The most commonly used energy func-
tions are knowledge-based statistical potential functions;
that is, they are empirically derived from statistical anal-
ysis of a set of high-resolution protein structures. When
that kind of potential function is constructed, the aniso-
tropic orientation dependence between the interacting
groups is a critical component for accurately represent-
ing key molecular interactions, such as those involved in
protein side-chain packing. In the literature, however,
many potential functions are limited in their ability to
describe orientation dependence. In all-atom potentials,
they typically ignore heterogeneous chemical-bond con-
nectivity. In coarse-grained potentials, such as (semi)-
residue-based potentials, the simplified representation of residues often reduces the sensitivity of the potential to side-
chain orientation.

Recently, in an effort to maximally capture the orientation dependence in side-chain interactions, a new type of
all-atom statistical potential was developed: OPUS-PSP (potential derived from side-chain packing). The key feature
of this potential is its explicit description of orientation dependence in molecular interactions, which is achieved with
a basis set of 19 rigid-body blocks extracted from the chemical structures of 20 amino acid residues. This basis set
is specifically designed to maximally capture the essential elements of orientation dependence in molecular packing
interactions. The potential is constructed from the orientation-specific packing statistics of pairs of those blocks in a
nonredundant structural database. On decoy set tests, OPUS-PSP significantly outperforms most of the existing knowl-
edge-based potentials in terms of both its ability to recognize native structures and its consistency in achieving high
Z scores across decoy sets. The application of OPUS-PSP to conformational modeling of side chains has led to another
method, called OPUS-Rota. In terms of combined speed and accuracy, OPUS-Rota outperforms all of the other meth-
ods in modeling side-chain conformation.

In this Account, we briefly outline the basic scheme of the OPUS-PSP potential and its application to side-chain model-
ing via OPUS-Rota. Future perspectives on the modeling of orientation dependence are also discussed. The computer pro-
grams for OPUS-PSP and OPUS-Rota can be downloaded at http://sigler.bioch.bcm.tmc.edu/MaLab. They are free for academic
users.
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Introduction
Knowledge-based statistical energy functions are widely used

in protein structure modeling and prediction.1 They are usu-

ally constructed on the basis of statistical analysis of pre-

defined interacting units from a set of selected high-resolution

structures. The interacting units can be either coarse-grained

structural components, such as CR atoms for representing a

whole residue, or atomistic structural components, as in all-

atom representation. The energy function is the potential of

the mean force or free-energy cost, required for generating the

observed distribution of the interacting units in the real struc-

tures from a zero-interaction reference state. Thus, the choices

of interacting units are crucial for the effectiveness of the

energy functions. One of the key issues is the orientation

dependence in the interaction between the units. This is

because the chemical bond connectivity is often ignored in

constructing statistical energy functions, leading to mis- or

under-representation of anisotropic orientation preference in

molecular interactions.

In the literature, substantial efforts have been made to

model anisotropic orientation preference.2-9 An early attempt

employed a side-chain-specific local reference frame to con-

struct distance- and orientation-dependent residue-based sta-

tistical potentials for proteins.10 In a subsequent work,4 it was

shown that contacts between side chains and main chains are

important and a CR-SC-Pep model was introduced to repre-

sent orientation dependence. In a more recent highly coarse-

grained potential, called OPUS-Ca,8 the orientation preference

was introduced into a distance-dependent pairwise potential.

In that case, the orientation dependence between two side

chains was described by the relative orientation between two

CR-C� vectors. It was found that inclusion of this effect

improved the ability of the potential to recognize the native

state and to improve Z scores in decoy set tests. Orientation

dependence for homodimeric11 and heterodimeric12 interac-

tions among seven hydrophobic residues in water has also

been included in an analytical modeling of potentials of mean

force.

Although a certain degree of success in describing orien-

tation dependence was achieved in the aforementioned work,

there is still much room for improvement. Recently, a new

type of potential, called OPUS-PSP, was developed to maxi-

mally capture the orientation dependence in side-chain inter-

actions.13 OPUS-PSP is an orientation-dependent statistical all-

atom potential derived from side-chain packing.

Here, we first briefly outline the general framework of

OPUS-PSP, followed by the results of its performance on decoy

set tests. Then, we will discuss a major application of OPUS-

PSP on side-chain conformation modeling via a method called

OPUS-Rota.14 Most importantly, on the basis of the lessons

learned from our own work and others, we will discuss issues

and insights in the modeling of orientation dependence in

molecular interactions.

Theoretical Framework of OPUS-PSP
OPUS-PSP is constructed from two major components: (a) a

novel set of 19 rigid-body blocks that define the geometry of

the interaction units and (b) a knowledge-based energy func-

tion based on packing statistics of these blocks. In addition, a

repulsive Lennard-Jones (LJ) term is used to deter steric

clashes. Coarse-graining and symmetry are also employed to

improve the statistics.

Definitions of Rigid-Body Blocks and Relative Orien-

tation. First, to form the basis set of interaction units, the

chemical structures of 20 residues are decomposed into a set

of 19 rigid-body blocks (shown in Figure 1a). Those blocks

share three important characteristics: (a) all atoms in a block

are chemically bonded and belong to the same residue; (b)

each block is treated as a rigid body; (c) all non-hydrogen

heavy atoms are assumed to be in the same plane. For the

proline ring of block type 19, assumptions b and c are approx-

imate and we found that they are reasonable in constructing

OPUS-PSP. Furthermore, the R carbon atoms of all residues,

except Pro and Gly, are not included in the basis set. We do

so by assuming that the heavily shielded R carbons have min-

imal influence on side-chain packing, and our results support

this assumption. In this representation, each residue contains

more than one block but each block appears only once in a

single residue. Figure 1b shows the block compositions of the

20 residue types. For notational consistency, we shall denote

residue types (20 total) with m and n, block types (19 total)

with a and b, block indices with R and �, and atomic indices

with i and j.

A special coordinate system is designed to define the rel-

ative orientation of a pair of blocks. As illustrated in Figure 2,

the relative orientation of block types a and b is defined using

three variables: two relative direction vectors rafb and rbfa

and an inter-rotation angle ψab along the axis connecting the

origins of the two blocks in their respective molecular refer-

ence frames. These coordinates describe the axial rotation

around the line linking the origins of the two blocks and the

pivot motion around the origin of each block, respectively. The

relative orientation of a pair of blocks is completely defined by
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these three variables (computed in the laboratory reference

frame), coupled with the molecular reference frame for each

block.

Energy Function. OPUS-PSP contains an orientation-de-

pendent packing energy term Eorient and a repulsive energy

term Erepul

EPSP ) Eorient + wrepulErepul (1)

where wrepul is a weight parameter optimized against a small

subset of decoy sets.13

To calculate the first term, the total orientation-dependent

packing energy, Eorient, we first define the packing energy for

a pair of blocks by

E(Ωab, a,b) )-kBT log
pobs(Ωab, a,b)

pref(Ωab, a,b)
(2)

Here, pobs is the probability of a particular orientation state for

block types a and b in contact with respect to all observed

contact states for any block pair extracted from the nonredun-

dant structure database, and pref is the contact probability of

all possible occurrences of that state without packing interac-

tions (the reference state). The quantity Ωab ) (rafb, rbfa, ψab)

designates the relative orientation of a and b, and kBT is the

Boltzmann constant (set to unity). The value of Eorient is

obtained by summing the packing energies of all pairs of

blocks in contact (“block contact pairs”) between all pairs of

nonconsecutive residues

Eorient ) ∑
α,�

δ(α,�)Ê(B(α),B(�)) (3)

Here, δ(R,�) is a delta function, whose value is 1 when blocks

R and � are in contact and 0 otherwise, and B(R) ) a maps

block R to its block type a. The second term in eq 3 is Ê(a,b)

) n(a,b)E(Ωab, a,b), where n(a,b) is a weighting term for block

size defined as the average number of pairs of heavy atoms

in contact between block types a and b (we define an “atom

FIGURE 1. Rigid-body blocks in OPUS-PSP. (a) Definition of 19 block types. Blocks are categorized into nine symmetry classes denoted by
Roman numerals. Block classes I, II, III, and VI are line shapes, and the others are plane shapes. R and R′ are not considered parts of the
blocks but are shown to indicate connectivity only. The reference frames for line and plane shapes are schematically shown alongside their
corresponding block types at the bottom of the figure. (b) Block composition of residues. All blocks (block types denoted by numbers in
parentheses and defined in Figure 1a) are circled for all amino acids. This figure is adopted from Figure 1 in ref 13.
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contact pair” as two atoms whose pairwise distance is less

than 5 Å). The weighting term is evaluated by random sam-

pling in the manner of the reference state probability calcula-

tion. This is necessary because larger blocks contribute more

atom contact pairs and therefore more energy. In calculating

Eorient, the contribution is restricted to side-chain-side-chain

and main-chain-side-chain interactions only. The main-

chain-main-chain hydrogen bonding and other short-range

interactions are not included.

The repulsive term Erepul is defined as

Erepul ) ∑
i,j

ELJ(i,j) (4)

where ELJ(i,j) is a repulsive (no attractive term) LJ potential for

two atoms i and j. Similar to Eorient, the summation in the LJ

term ignores interactions between pairs of main-chain atoms

and between two atoms in the same residue. Note that Eorient

and Erepul are typically orthogonal; therefore, overcounting is

not an issue.

Coarse Graining of Orientation Bins and Symmetry. It

is necessary to coarse grain the orientation space and exploit

the symmetry of the 19 blocks given the limited amount of

nonhomologous protein data available. As shown in Figure 1a,

these blocks are classified into nine symmetry classes that

belong to two basic groups: plane shapes (IV, V, and VII-IX)

and line shapes (I-III and VI). Note that VI is regarded as a line

shape because of the 6-fold axial symmetry of the phenyl

ring.

For each plane-shaped block, the relative direction with

respect to the molecular reference frame of the block is

coarse-grained into 26 bins (illustrated in Figure 3a). For each

line-shaped block, the cylindrical symmetry allows usage of

five latitudinal bins (shown in Figure 3b). Figure 3c describes

the θ and φ ranges of each relative direction bin. The inter-

rotation angle is coarse-grained into four bins spanning π/2

radians each. In our study, we found that a choice of 26 direc-

tional bins is appropriate for plane-shaped blocks to balance

the trade-off between the number of bins and the available

structure data for statistical analysis.

For two blocks in contact, the maximal number of bins is

26 × 4 × 26 ) 2704. However, in practice, certain redun-

dant bins are consolidated on the basis of the intrinsic molec-

ular symmetry of the blocks. This leads to a much smaller

number of bins.

Performance of OPUS-PSP on Decoy Set
Recognition
The performance of OPUS-PSP was examined in benchmark

studies using the popular decoy set collections: Decoys ‘R’

Us,15 HR,16 Rosetta (and Rosetta2),17,18 MOULDER,19 structal

(http://dd.compbio.washington.edu/), and the decoy sets col-

lected by Gilis,20 which we call the Gilis collection. The results

are presented in Table 1. Of all of the benchmarks, only the

MM-PBSA21 and MJ_2005 potentials7 outperformed OPUS-

PSP on the structal decoy sets. These decoy sets contain

decoys generated by comparative modeling of globins and

immunoglobulins [60% of them have a CR root-mean-square

deviation (rmsd) less than 2.5 Å from the native conforma-

tion]. For the ig_structal and ig_structal_hires sets, OPUS-PSP

can do better if main-chain interactions between pairs of block

types {1,5,6,7} are also included in the total energy

calculation.

OPUS-Rota: A Fast and Accurate Method
for Side-Chain Modeling
Side-chain conformation modeling is one of the most severe

bottlenecks in the high-accuracy refinement of computation-

ally predicted structures. Aided by OPUS-PSP, OPUS-Rota14 is

a new method developed for such a purpose.

Rotamer libraries are most commonly and successfully

used by side-chain modeling methods to reduce the space of

conformations that must be sampled, and there are many

rotamer-based side-chain modeling method, as summarized in

the OPUS-Rota paper.14 In the rotamer approach, side-chain

conformations are limited to a small set of most likely posi-

FIGURE 2. Definition of the relative orientation of blocks in OPUS-
PSP. If block types a and b are in contact, then rafb and rbfa are the
relative direction vectors and ψab is the inter-rotation angle along
the axis connecting the origins oa and ob of the two blocks. This
figure is adopted from Figure 2 in ref 13.

Explicit Orientation Dependence in Empirical Potentials Ma

1090 ACCOUNTS OF CHEMICAL RESEARCH 1087-1096 August 2009 Vol. 42, No. 8

D
ow

nl
oa

de
d 

by
 U

N
IV

 M
A

A
ST

R
IC

H
T

 o
n 

A
ug

us
t 2

9,
 2

00
9 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 M
ay

 1
5,

 2
00

9 
| d

oi
: 1

0.
10

21
/a

r9
00

00
9e



FIGURE 3. Definition of the relative direction bins for line- and
plane-shaped blocks in OPUS-PSP. (a) A total of 26 relative direction
bins for plane-shaped blocks (classes IV, V, and VII-IX). Each bin is
denoted by the index (nxnynz) and is derived from the spherical
angles θ and φ of vector rafb in the reference frame of block a. (b)
A total of 5 relative direction bins for line-shaped blocks (classes
I-III and VI). Each bin is denoted by the index (nxny) and is derived
from the angle θ between the primary axis (x axis) and vector rafb

formed from the origin oa of block a to the origin ob of block b. (c)
Direction bin indices plotted on a Mercator projection, for
illustration only (a Mercator projection is a cylindrical map
projection and the most common geographic map projection). The
ranges for spherical angles θ and φ are indicated on the axes of the
map. For plane shapes, the first or last row of the map represents a
single bin at each of the poles rather than eight individual cells.
The 5 bins for line shapes (on the right) are consolidated from the
26 latitudinal bins of the plane shapes. This figure is adopted from
Figure 3 in ref 13.

TABLE 1. OPUS-PSP Performance on Various Decoy Setsa

(a) OPUS-PSP Performance Compared to Other Potentials

top 1/total numberb mean Z

Decoys ‘R’ Us18,45-48

OPUS-PSP 31/34 -5.37
HPMF49 29/32c -4.18
DOPE39 28/32
MSE50 21/23 -5.78
DFIRE38 27/32 -4.52
MJ_20057 27/34 -5.93
DFIRE-SCM51 23/32 -4.36
MM-PBSA21 23/34 -1.95
DGR52 21/25 -5.25
DWL53 21/32 -3.66
TE1354 14/25 -3.53
CALSP55 15/25
Rosetta6,18,56 14/32d

MOULDER19

OPUS-PSP 19/20 -4.60
DOPE 19/20d

Rosetta 19/20d

DFIRE 19/20d

DFIRE-SCM 19/20d

HR16

OPUS-PSP 135/148 -7.50
HR16 113/150
TE13 92/148e

Rosetta (X-ray)18

OPUS-PSP 37/41 -6.56
DFIRE 31/41 -3.91
DFIRE-SCM 33/41 -4.90
CALSP 28/41 -4.16

Rosetta217,18

OPUS-PSP 23/41 -2.71
OPUS-PSP (X-ray) 22/25 -4.49
DOPE 11/41f -1.50

Rosetta 1 + 2g (X-ray)17,18

OPUS-PSP 34/35 -6.76
HPMF 30/35 -4.42

hg_structalh

OPUS-PSP 18/29 -1.76
MM-PBSA 20/29 -1.60
MJ_2005 22/29 -2.76

ig_structalh

OPUS-PSP 46/61i -2.79
MJ_2005 49/61 -3.55

ig_structal_hiresh

OPUS-PSP 19/20i -3.03
MJ_2005 19/20 -4.31

Gilis20

OPUS-PSP 43/45 -5.58

(b) OPUS-PSP Performance on Decoys ‘R’ Us

PDB code decoy set size rank Z score

4state_reduced
1 1ctf 631 1 -4.23
2 1r69 676 1 -4.52
3 1sn3 661 1 -5.35
4 2cro 675 1 -3.77
5 3icb 654 1 -2.72
6 4pti 688 1 -5.97
7 4rxn 678 1 -4.32

fisa
8 1fc2 501 312 0.25
9 1hdd-C 501 1 -4.10
10 2cro 501 1 -5.05
11 4icb 501 1 -7.40
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tions (rotamers) taken from a rotamer library derived from

X-ray structures.

Fast rotamer methods, such as SCWRL,22 can quickly locate

the global minimum by using a simple pairwise energy func-

tion and dead-end elimination (DEE).23,24 The accuracy of such

methods is limited because the energy function used is

oversimplified.25,26 Methods that use more accurate energy

functions, such as NCN27 and LGA,28 are significantly slower

because of computationally expensive long-range and multi-

body terms. High computational cost limits the application of

these methods because the speed of execution in side-chain

modeling is very important in the iterative process of struc-

ture prediction.

Brief Outline of the OPUS-Rota Algorithm. The total

energy function used in OPUS-Rota has four terms

Etotal ) worientEorient + wvdwEvdw + Erot + wsolvationEsolvation

(5)

Here, Eorient is the side-chain packing potential OPUS-PSP,13

which is a short-range, pairwise, and coarse-grained all-atom

potential that allows for fast and accurate energy evaluation

during intensive sampling. The second term Evdw is a modi-

fied 6-12 LJ potential also used in OPUS-PSP; Erot is a term

related to rotamer frequency; and Esolvation is a solvation energy

term. The three weights, worient ) 0.15, wvdw ) 1.0, and wsol-

vation ) 0.1, are obtained by optimizing against a small set of

high-resolution structures.

The third rotamer frequency term Erot has the same form

used in SCWRL.22 However, the contributions of bulky ring

side chains {Phe, Tyr, Trp, or His} are scaled up by a factor of

3. The rotamer frequencies are taken from Dunbrack’s rota-

mer library.29

Similar to what was used in the literature,30 the solvation

energy Esolvation takes the form

Esolvation ) ∑
i

∆σiSi (6)

where Si is the solvent-accessible surface area (SASA) of atom

i and ∆σi is the atomic solvent parameter from Sharp et al.31

To rapidly calculate SASA, OPUS-Rota adopts the pairwise

approximation method of Zhang et al.32

OPUS-Rota uses simulated annealing by heat-bath Monte

Carlo as a sampling method,33 which is able to rapidly iden-

tify near-native conformations when combined with neigh-

bor list techniques and efficient energy updates. In OPUS-Rota,

the move set for a given main-chain conformation is the col-

lection of rotamer states from Dunbrack’s rotamer library,29

selected in order of highest to lowest probability until the

cumulative probability reaches at least 99.5%. In this way,

almost all possible rotamers can be sampled.

Performance of OPUS-Rota. The performance of OPUS-

Rota was benchmarked with 65 high-resolution X-ray struc-

tures used in the literature.27,34 The analysis was carried out

for both overall (all residues) and core residues. Core residues

are defined as residues with a solvent-accessible ratio below

17% (53.5% of residues are found to be core residues by this

definition). The accuracy of �1 is defined as the percentage of

residues whose predicted �1 dihedral is no more than 40°

from the native value. The accuracy of �1+2 is defined as the

percentage of residues for which both �1 and �2 are in the 40°

range.

Figure 4 shows the accuracy of OPUS-Rota for each resi-

due type. Serine has the lowest �1 accuracy for all residues

and core residues. Polar and charged residues have lower �1+2

accuracy, especially flexible surface residues. Hydrophobic and

aromatic residues consistently have high accuracy, except for

His, which has high �1 accuracy (overall, ∼93%) but low �1+2

TABLE 1. Continued

(b) OPUS-PSP Performance on Decoys ‘R’ Us

PDB code decoy set size rank Z score

fisa_casp3
12 1bg8-A 1201 1 -6.01
13 1bl0 972 1 -6.00
14 1eh2 2414 1 -4.42
15 1jwe 1408 1 -7.95
16 smd3 1201 1 -6.73

lattice_ssfit
17 1beo 2001 1 -9.58
18 1ctf 2001 1 -6.78
19 1dkt-A 2001 1 -6.75
20 1fca 2001 1 -6.13
21 1nkl 2001 1 -4.40
22 1pgb 2001 1 -7.79
23 1trl-A 2001 1 -4.81
24 4icb 2001 1 -5.95

lmds
25 1b0n-B 498 1 -4.74
26 1bba 501 501 3.66
27 1ctf 498 1 -8.99
28 1dtk 216 1 -6.07
29 1fc2 501 409 0.94
30 1igd 501 1 -7.77
31 1shf-A 438 1 -7.87
32 2cro 501 1 -7.17
33 2ovo 348 1 -5.87
34 4pti 344 1 -8.15

a This table is adopted from Table 1 in the original OPUS-PSP paper.13 b “total
number” is the total number of decoy sets used for a specific decoy set
collection, and this number may vary from study to study in the literature
even for the same collection. c OPUS-PSP recognizes 30 of the 32 decoy sets
used for HPMF. d Results taken from ref 39. e Results taken from ref 16.
f Results taken from ref 57. g The total number of 35 is a subset of X-ray
structures in the combined Rosetta and Rosetta2 collections. h From
http://dd.compbio.washington.edu/. i OPUS-PSP includes main-chain interactions
of block types {1,5,6,7}.
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accuracy (overall, ∼60%; core, ∼70%). This is probably due

to the lack of knowledge of protonation states.

OPUS-Rota outperforms other related methods in terms of

combined speed and accuracy. As shown in Table 2, on the

65-protein test set mentioned above, OPUS-Rota is much

faster than all other methods except SCWRL,22 which is sim-

ilar in speed. In addition, OPUS-Rota is much more accurate

than SCRWL and comparably accurate with the rest. The com-

putational efficiency of OPUS-Rota scales linearly with pro-

tein size.

For real applications in structure prediction, both SCWRL

and OPUS-Rota were also tested on the Wallner and Elofs-

son homology modeling benchmark set.35 It was found that

OPUS-Rota performs consistently better than SCWRL when

sequence identity is higher than 40% (see Figure 3 in ref 14).

When sequence identity is lower than 40%, both methods

have low accuracy, which is an expected result because the

template structures are so far away from the target structures.

This indicates that the quality of side-chain modeling heavily

depends upon the accuracy of the main-chain coordinates.

Discussion and Future Perspective
The most important feature of OPUS-PSP is its unique basis set

of 19 rigid-body blocks that captures the essential elements

of anisotropic orientation-dependent molecular interactions.

OPUS-PSP is designed to maximally sense the change of rel-

ative orientation between two packed blocks, even when there

is insignificant change in the packing distance. To the best of

our knowledge, this is a feature that no other potential

possesses.

OPUS-PSP is not a distance-dependent potential. The effect

of packing distance between atoms is implicitly contained in

its form. For example, if two blocks are in contact with native

packing orientation, then the atomic contact criteria used in

OPUS-PSP and the orientation parameters will restrict the dis-

tances between the atoms because of the fixed sizes of the

blocks.

OPUS-PSP does not model solvation effects explicitly, but

these effects are implicitly contained in its form as well; e.g.,

hydrophobic blocks will surely prefer to pack against each

other. Although OPUS-PSP may be used in combination with

other solvation models if necessary, it may be advantageous

to avoid modeling explicit solvation effects in other cases. For

example, in modeling membrane protein packing, OPUS-PSP

may have an edge relative to other methods because the sol-

vation dependence in this case may be very different from

that of soluble proteins. Even though OPUS-PSP is constructed

from a structure database of soluble proteins, the microenvi-

ronments of side-chain packing in membrane proteins should

be similar to those of soluble proteins.

In constructing any statistical potential, the choice of refer-

ence state is very important.36,37 The Boltzmann expression in

eq 2 is a general way of developing the potential, and the

FIGURE 4. Accuracy of OPUS-Rota for each residue type. (a) Overall
�1 and �1+2 accuracies. (b) Core residue �1 and �1+2 accuracies (core
residues are defined as the residues whose solvent-accessible ratio
is below a cutoff of 17%). This figure is adopted from Figure 2 in
ref 14.

TABLE 2. Accuracy and Speed of OPUS-Rota and Several Other
Side-Chain Modeling Methods on the 65-Protein Test Seta

all residues core residuesb

�1 (%) �1+2 (%) �1 (%) �1+2 (%) execution time references

OPUS-Rota 89.0 79.1 94.5 88.7 9.6 mind

SCWRL 83.6 70.3 88.8 79.2 2.2 min + 5 hc,d 22
NCN 89.3 77.5 94.1 87.4 24 hf 27
LGA 88.5 74.1 93.7 84.6 14 hf 28
SPRUCE 86.7 74.0 93.7 86.7 20 he 34
Rosetta 85.1 72.7 91.5 84.5 43.7 hd 58
SCAPorig

g 84.1 70.7 90.7 82.5 2.1 hd 25
SCAPmodi

g 83.1 70.1 91.4 84.0 24 hf 27
a This table is adopted from Table 2 in the original OPUS-Rota paper.14 b Tests
on OPUS-Rota, SCWRL, SPRUCE, Rosetta, and SCAPorig use the same definition
of core residues (SPRUCE uses different solvent parameters and a different
cutoff), while NCN, LGA, and SCAPmodi define the core as having <20%
accessible surface area in the native structure, according to the method by Lee
and Richards.59 All of the definitions result in a similar portion of core
residues, ∼53.5%.34 c SCWRL requires >5 h for protein 1qlw but only 2.2 min
for the remaining 64 proteins. d Times for OPUS-Rota, SCWRL, Rosetta, and
SCAPorig are for a single run on one Intel Xeon 2.8 GHz processor (by the
software provided by the authors). e SPRUCE is run on one Intel Xeon 3.2 GHz
processor.34 f Data for run times are from ref 27. g SCAPorig is the original
version of SCAP25 (executable provided by the authors), and SCAPmodi is the
modified version of SCAP from ref 27, in which a larger rotamer library is
used.
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accuracy of the potential can be improved by proper model-

ing of either pobs, pref, or both. The significance of the choice

of pref is evident in the development of the DFIRE38 and

DOPE39 potentials. In OPUS-PSP, both pobs and pref are mod-

eled very differently, in which case the statistics of pobs are

generated based on the 19-block basis set and those of pref

are generated by self-avoided random sampling of blocks with

different sizes.13 OPUS-PSP is also the first potential in which

the geometry of interacting groups is explicitly considered in

constructing the reference state.

OPUS-PSP is presently a discrete potential. In principle, it

can be extended in two different ways. The first is to trans-

form the discrete potential into a square-well potential and use

it as a native contact potential between blocks. This is advan-

tageous because the 19 blocks are expected to capture the

essential elements of molecular interactions in an orientation-

sensitive fashion. Such a contact potential can be combined

with a funnel-like molecular mechanics potentials. In this way,

OPUS-PSP may be used essentially as a bias to deepen the

native state energy well without altering the long-range inter-

actions. Note, the contact potential is short-range in nature,

i.e., only sensitive to native-like packing patterns between

blocks. The second is to revise OPUS-PSP to be continuous, so

that derivatives can be obtained for molecular simulation.40

However, a substantial reparameterization may be needed to

achieve this.

A distinct feature of OPUS-PSP is that the interactions between

pure main-chain atoms are excluded. However, many other stud-

ies showed that those interactions are important and highly cor-

related with the side-chain interactions.4,5,41,42 Thus, revising the

block basis set and including main-chain atoms may be direc-

tions for future improvement.

OPUS-PSP is a pairwise potential that allows for very

rapid computational evaluation. This feature is critically

important for some applications, such as the side-chain con-

formational modeling method, OPUS-Rota.14 Along with its

strong overall performance, OPUS-Rota performs particu-

larly well in modeling aromatic side chains because of sev-

eral design features. First, the contributions of aromatic

residues in the rotamer frequency term are enhanced. Sec-

ond, the vdW potential is softened for aromatic side chains,

which enables the aromatic side chains to find their pre-

ferred rotamer angles, especially inside the densely packed

protein core. Third, OPUS-PSP is inherently more sensitive

to the orientation of the aromatic planes.

A major challenge in side-chain modeling is the issue of

main-chain flexibility. The most successful methods, includ-

ing OPUS-Rota, perform well when the main chain is in its

native conformation, yet the accuracy of side-chain placement

decreases quickly once the main chain deviates from its native

state. There is of course a question of the significance of

“native state” side-chain placement if the main chain is not in

its native state. Main-chain and side-chain states are tightly

coupled; if one is not in its native state, neither will the other.

Thus, the ultimate way to solve this problem is to refine the

main chain and side chain simultaneously.43,44 There is

another issue of causality between the main-chain and side-

chain conformations. Most prediction methods try to position

the main chain first and then place the side chains afterward.

In reality, however, it is not unreasonable to assume that the

main-chain conformation is dramatically influenced by side-

chain packing. This is clear from the success of OPUS-PSP in

decoy set recognition. OPUS-PSP does not explicitly account

for pure main-chain interactions, yet it can consistently and

accurately recognize the native state out of a large number of

decoys. This result seems to imply that side-chain packing is

crucial for native state formation; i.e., it is difficult to form a

perfectly native protein backbone without having all of the

side chains in place. This is also in line with the common

observation that main-chain hydrogen-bonding interactions

are not specific, because any pair of residues can form hydro-

gen bonds, while only specific pairs of side chains can be

packed together favorably.
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